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Analysis of the structure of the ears in teleost fishes has led to the tentative suggestion that otolithic endorgans

may function differently in different species. Recently, evidence has demonstrated different "types" of
sensory hair cells can be found in the ears of teleost fishes, and individual hair cell types are found in discrete
regions of individual sensory epithelia. The presence of multiple hair cell types in fishes provides strong
support to the hypothesis of regional differences in the responses of individual otolithic sensory epithelia.
The finding of hair cell types in fishes that closely resemble those found in amniote vestibular endorgans also

suggests that hair cell heterogeneity arose earlier in the evolution of the vertebrate ear than previously

thought.

INTRODUCTION

Although reports of fish responding to sound have been
around since the time of Aristotle, the experimental history

of fish audition only began in the early part of the twentieth

century (e.g., [1]). As reviewed ina number of studies, the

biological role of sound detection by fish still remains, for

the most part, unknown (see [2, 3], for reviews). In particu-

lar, despite an "in depth" analysis of the structure of the fish

ear (e.g., [4- 7]) and the structure of the eighth nerve path-

way in the central nervous system of fishes (e.g., [8]), the

functions of the ear and the mechanisms of information proc-

essing within the central nervous system of fishes [9] remain

poorly known.

Even the most basic assumptions about the fish auditory

system, that different sensory endorgans in fishes specifi-

cally respond to acoustic or to vestibular stimuli [10], is now

subject to question. Indeed, analysis of the ear structure of

fish over the past decade have led us to the idea that each of

the otolithic endorgans of fish ears may be involved with
both senses.

Adding to the problem of understanding the function of

the ear in fishes is the more than 25,000 extant species of

teleost fish [I 1] with all the striking inter-specific variation

in ear structure among many related genera and families [7].
Variation in structure has led us to suggest that mechanisms

of fish hearing, at least at the level of detection and process-

ing of sounds in the ear. may have evolved in different direc-
tions among the various species (e.g., [6, 12]).
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The purpose of this paper is to examine different aspects

of the gross and ultrastructural variations within fish ears and

to consider the significance of this variation in terms of the
function of the ear. Since a number of recent papers have

considered inter-specific variation of the ear in some depth

(see [3, 5, 6, 12]), we will principally focus on the evidence

for variation in receptor cell structure within single endor-

gans of the ear. Our discussion of intraepithelial variation

suggests that the differences in anatomy of receptor cells in

different regions of a single otolithic endorgan gives addi-

tional validity to the hypothesis of functional variation

within a single endorgan of a fish ear.

The idea of regional variations in structure and function

within a single endorgan is not unique, nor should it be sur-

prising. The very function of the basilar papilla or the coch-

lea, the major auditory endorgans in reptiles, birds and mam-

mals (amniotes), depends upon a variation in structure along

the length of the endorgan. Differences such as stiffness,
thickness of the basilar membrane, and other such features

were recognized by yon Bdkdsy [I3] and others as being

the basis for regional discrimination of sound frequencies

in the mammalian cochlea. More recently, the ultrastructu-

ral differences, such as those found in the inner and outer

hair cells of the mammalian cochlea, have become recog-

nized as a fundamental aspect of mammalian hearing (re-

viewed in [14]).
In contrast to the amniote ear, it has long been assumed

that regional variation in function in any endorgan oftlae fish

ear had no basis because receptor cells were homogene0usi '
In actuality, there had been very little direct physiological or

anatomical data to support an argument for or against region-
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Fig. 1. Drawing of the ear of the Atlantic mackerel (Scomber scomber) from Retzius ( 18811. A medial view is shown in the left and a lateral view on the

right, aa, ac, ap) Cristae of anterior, horizontal and posterior semicircular canals; ass) apex of crus commune; ca, ce, cp) anterior, horizontal and posterior

semicircular canals; de) endolymphatic duct: 1) lagena; ran) macula neglecta: ms) saccular epithelium; mu) utricular epithelium; o) otolith" pt) lagena

epithelium; raa. rap, rL rn, rec, ru) rami of eighth nerve to various endorgans; s) saccule: as) crus commune: u) utricle.

alization. However, in the last decade, a sufficient body of

data has been developed to support such an argument. To ad-

vance the study of eighth nerve sensory systems in fish, a

need to understand the relationships between structure and

function in the ears of fishes has become imperative.

We begin by examining the basic structure of the ear of

fishes and discuss a few gross anatomical findings that sup-

port the idea of differences in the function of the ear both in-

ter-specifically and within a single endorgan. We will then

consider more recent data, primarily from our laboratory,

that further supports the idea of regionalization within single

endorgans of the fish ear. Finally, we will briefly consider

the functional implications of regionatization

STRUCTURE OF THE EAR

The ear of bony fishes (Fig. I) isbasically similar to the

ear of tetrapod with one exception. The fish ear lacks a

mechanism for extended hearing as transduced by the coch-

lea or basilar papilla. The fish ear has three otolithic endor-
gans (saccule, utricle, lagena) and three semicircular canals

with associated sensory regions (eristae). Many species have

a seventh endorgan, the macula neglecta (see [7]), which
appears to function with the cristae in at least some spe-

cies [15].

Each of the otolithic endorgans has a sensory epithelium

containing sensory hair cells and supporting cells. As in am-
niotic vertebrates, the hair cells have apical ciliary bundles
that project into the lumen of the various ear chambers. Each

ciliary bundle contains a single kinocilium which is located

to one side of a group of stereocilia (e.g., [16]). The ciliary
bundles are overlain by a single calcareous otolith which par-

tially, or completely, fills the chamber of the endorgan. The

otolith is considered to be the densest structure in the body of

a fish _ about three times the density of soft tissues or other

calcified structures [17].

As Hudspeth and his colleagues have so clearly shown,

the mechanism for stimulating a hair cell is bending of the

bundle (e.g., [18]). This is accomplished in fish otolithic en-

dorgans by a shear generated by the relative motion between

the sensory epithelium, which moves with the water mass,

and the denser otolith which moves at a different amplitude

and phase than the soft tissues of the body.

A number of aspects of the gross morphology of the ear

vary across fish species. This is perhaps most dramatically

seen in the saccule, although utricular structure varies among

those species that seem to use that endorgan for hearing (e.g.,

[19, 20]). Variations in gross structure include the shape and

size of the saccular epithelium, the shape of the otolith and

the percent of the chamber volume it fills, and the extent of

the epithelium actually overlain by the otolith. The shape of

the otolith is particularly interesting in that it can be used to

taxonomically classify fishes [17].

Perhaps the most extreme differences in epithelial struc-

ture are encountered when comparing species of the superor-

der Otophysi (e.g., goldfish, catfish, and relatives) with
fishes from almost all other taxonomic groups. In the

Otophysi, the saccule is long and thin. The lagena is rounded

and its total epithelial area is as large, if not larger than, that

of the saccule. In contrast, most other species have a diminu-

tive lagena compared with the saccule. This difference may -

be associated with very different strategies in the manner

in which sound detection occurs in the otophysans as com-

pared to other species (see [35], for review). The Weberian

ossicles of Otophysi appear to enhance the pressure compo-

nent of a signal by carrying signals directly from the swim-
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bladder to the saccule of the inner ear in a manner that may

be functionally analogous to the mammalian middle ear

bones (e.g., [21]).

Scanning electron microscope examination of the sen-

sory epithelia has revealed distinct variations of ciliary bun-

dle structure. Two aspects of the ciliary bundle in particular

appear to hold some importance.

First, the absolute lengh of the bundle varies in different

regions of the epithelium, as well as between different epi-

thelia [22]. For example, the bundles on the cristae of the

semicircular canals are generally extremely tong (e.g., [23]),
whereas those in the otolithic endorgans are generally

shorter. Even within an endorgan, the len_h of ciliary bun-

dles vary. In many species the ciliary bundles on the hair

cells at the margins of the saccutar epithelia are longer than
on the cells towards the center (e.g., [22]) while in oto-

physans, the ciliary bundles on cells at the rostral end of the

saccular otolith are generally shorter than those at the caudal

end [24].
The second source of variation lies with the polarization

or orientation of the ciliary bundles on the epithelia. Orienta-

tion is defined by the position of the kinocilium relative to
the rest of the bundle. In fish as in other vertebrates, all of the

ciliary bundles in any given region of a sensory epithelium
are oriented in the same direction (e.g., [5, 25]). This imparts

physiological polarization on the different epithelial regions,

and may serve as the basis for sound source localization in

fish (e.g., [3, 12]. Popper and Coombs [6] pointed out the

particularly extensive inter-specific variation in the hair cell

orientation patterns of the saccule. Such variations are not
necessarily related to taxonomic position of fishes, but in-

stead, seem to be associated with peripheral specializations

relating to biophysical tmnsduction. For example, most spe-
cies that have swimbladder projections that abut the saccule

(considered to be a specialization to enhance hearing) have

basically the same type of saccutar hair cell orientation pat-

tern [6]. While the functional significance of these different

patterns remain unknown, it is reasonable to speculate that

the different patterns would have a bearing on the teleostean

process of directional detection.

WHAT DO THE OTOLITHIC ENDORGANS DO?

The earliest studies of von Frisch (e.g., [10])suggested

that the saccule, and possibly the lagena, are involved with

hearing while the utricle functioned as a vestibular endorgan.

More recent evidence (reviewed in [3, 12]) suggests that the

different otolithic endorgans may function as both auditory

and vestibular receptors. It is important to realize that a dis-

tinction between auditory and vestibular stimulation is some-

what difficult Io make for aquatic animals since sensory

transduction in both sensory domains involves motion of the

body with the water mass relative to the denser otoliths in the
ears. Whereas vestibular stimulation in terrestrial animals

can be readily distinguished from acoustic stimulation, ves-

tibular and auditory stimulation for aquatic vertebrates basi-

cally are different frequency functions along a continuum.

HAIR CELL TYPES

One of the most interesting features of the mammalian

ear is the presence of sensory hair cells that differ in size,

shape, organelles and innervation (see [16, 26,27]). This
variation is encountered in the cochlea with the ultrastructu-

rally distinct inner and outer hair cells, and in vestibular en-

dorgans with their two different types of hair cells (the type I
and type II cells). While two hair cell types are found ubiqui-

tously in the different endorgans of amniotes, the functional

significance of these receptor cells is only now beginning to
be understood (e.g., [28, 29]).

The earliest description of different types of vertebrate
hair cells came from the electron microscopic studies of

mammalian vestibular endorgans by Wers_ill. Wers_ill and

his colleagues (e.g., [16, 26, 27]) demonstrated two distinct
hair cell types found in otolithic endorgans and cristae. They

identified a type I hair cell with a vase-like shape that was

surrounded by a nerve chalice. A type II hair cell was de-

scribed as cylindrical in shape with multiple synapses to-
wards the basal end that were made by afferent neurons.

More recent studies continue to refer to the type I and type II

hair cell, although there is some question as to whether the

type I cell may have multiple forms [30] or whether the

significant difference between the two cell types is primar-

ily related to innervation. Yet, recent evidence suggests dif-
ferences in ionic channels between type I and type II hair

cells [3 I, 32].
WersNl and his colleagues [27], when considering the

type l and type II hair cells among the vertebrates, pointed
out a taxonomic anomaly. Based upon TEM examination of

a number of species ranging from fishes to mammals, they

concluded that the type II hair cell is found in the endorgans
of all vertebrates, but that the type I hair cell is only found in

amniotes. In essence, they proposed that anamniotes (fishes,

amphibians, elasmobranchs, agnathans) have a single type of
hair cell that is essentially the amniote type II cell.

COULD THERE BE MULTIPLE HAIR CELL

TYPES IN FISHES -- EARLY EVIDENCE

Wers_ill's suggestion that there is but a single hair cell

type in fishes was followed by a number of ultrastructural
studies that did nothing to dispel this idea (e.g., [33- 36]).

These studies examined only a few of the more than 25.000

extant species, although across a reasonably broad taxo-

nomic range. The basis for questioning homogeneity among
fish hair cells arose from a few studies that suggested small

variation in the basic hair cell type among fishes. Hoshino

[37] pointed out striking differences in the organelle compo-
sition of hair cells in different regions of the otolithic endor-

gans of lampreys. In elasmobranchs, differences in the or-

ganelle composition of hair ceils in the saccule [38] and mac-
ula neglecta [39] were suggested, but these were only pass-

ing observations that were not correlated with intraepithelial
region. A detailed examination of the hair cells of the lagena
of an anabantid fish (Colisa) [40] suggested some variation
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MULTIPLE HAIR CELL TYPES

IN FISH -- DIRECT EVIDENCEI

A series of investigations in our laboratory.

have demonstrated distinct physiological and
biochemical differences between hair cells

found in different epithelial regions of individ-

ual otic endorgans in several species of fish.

These variations compelled us to reconsider

the issue of different types of hair cells within

a single epithelium.
In the first of these studies, we focused on

the utricle of the oscar, Astronotus ouellatus (a

cichlid fish), because, like all utriculi, the epi- a
thetium has several distinct areas including a

striota region and several other regions collec-

tively called the extrastriolar region. We dem-
onstrated that hair cells in the striola region

(Fig. 2) exhibited positive immunoreactivity

to an antibody to the calcium binding protein

S-t00, whereas hair cells outside of this region

(in an area called the extrastriola) did not ex-

hibit immunoreactivity [42].
This observation led us to test whether re-

gional differences would be seen as a result of

treatment with the aminoglycoside drug gen-

tamicin sulphate, an ototoxie drug that selec-

tively damages type I hair cells of mammals

[43]. In the oscar, gentamicin caused loss of

ciliary bundles on the utricular striolar hair

cells and even with significantly greater doses,

not to extrastriolar hair cells [44, 45]. Interest-

ingly, individual new hair cells appeared

within the striola simultaneously as the more

mature hair cells were damaged, and the den-

sity of cells in the area damaged by gentamicin

also showed complete recovery within I0 days
after termination of treatment [44].

Hair cell differentiation in fish was further

demonstrated by another type of study. Just as the type I hair
cells of amniotes are innervated by calyceal endings of their

afferent fibers [16, 26], the striolar hair cells of fishes are in-

nervated by distinct afferents in which spike initiation is lo-

cated on the postsynaptic membrane [46]. Such is not the
case for the extrastriolar hair cells. In addition, the diameter

of the fibers innervating the striolar are considerably greater

than those innervating the extrastriolar cells.
Additional studies demonstrated similar differential re-

sponses to S-100, gentamicin, and/or afferent types in the
lagena and saccule of the oscar [42, 46] and the kissing

gourami Helostoma temincki, [47]), as well as in the saccule

and lagena of the goldfish, Carassius auratus [48, Saidel

et al., submitted]. The taxonomic difference between As-

• -p_ . . . . ,, _ ...... -.... _ . !b _,_"_ _.: .'_._,-,_. ,,--r . .."_:...,':_<-._,.-."_%,i_-,-: ..,,a.. _.

Fig. 2. Scanning electron micrographs af the scn,;ory _urihcc ,,i the utridc trom the oscar,A$-
tronotus ocellatus, la) Shox_sthe whole surlhcc oflhc utricic. II_c;triolar reeion ( St ) has some-
what lower density hair ceils _a_sht)_n Ilaa,__1'nilicd in (h).L lhc ¢\lra_tr_t,larregion consists of

. the Rampa (Ra). Lacinia _ i..:) and Cotitius t(,,) The inset ,,utiinc_,the striolar region as the
stippled area. (from[41J).

tronotus and Hclosloma compared with t.'_trassius is nearly

maximal within the euteteostei suggesting that the different

classifications of hair cell types may be widely distributed

among bony teleost fishes.

STRUCTURAL EVIDENCE FOR CATEGORICAL

TYPES OF HAIR CELLS IN FISHES!

Whiie the various studies mentioned above demonstrated

a heterogeneity among hair cells in fishes, it was not until.we

targeted ultrastructt, ral investigations to thc above tests that

we could relate specific hair cell features to our categorical

types. L'sing serial reconstruction of cxtrastriolar and striolar
hair cells of the oscar utricle. Chang et al. 141] demonstrated
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Fig. 3. Transmission electron micrographs of a portion of a striolar (a) and extrasmolar (b) hair cell.

Slriolar hair cells have large mitochondria (M) and a subnuclear cisternae (Pc). Extrastriolar hair cells

have small mitochondria and no subnuclear cisternae.

clear ultrastructural differences between hair cells in these

regions. Striolar hair cells possess smaller synaptic bodies
than found in extrastriolar hair cells. They also have larger
mitochondria than extrastriolar hair cells as well as a subnu-

clear cistemae system of smooth and rough endoplasmic

reticulum that is not found in extrastriolar hair cells (Fig. 3).

These, and a number of other distinct differences between

striolar and extrastriolar hair cells can only relate to differ-

ences in some, as yet unknown aspect of hair cell physiol-

ogy. The differences between the two hair cell types are it-

lusmated in Fig. 4.

We raised the question of the ubiquity of ulrrastructural

differences in hair cell types because the findings in the utri-

tie of the oscar may be unique to that species. Recent exami-

nation of the saccute of the oscar also demonstrate the pres-

ence of the two cell types in that endorgan [49] as did studies

of the saccule and utricle of the goldfish. These latter demon-

srrated that similar cell types are present in those endorgans

of a species that is taxonomically distinct from the oscar
[48, Saidel et al., submitted].

WHAT SHALL WE CALL DIFFERENT

HAIR CELL TYPES IN FISHES?

The question arose as to what we should call the hair cell

types found in the oscar (e.g.. [41]), and goldfish [48]. The
original suggestion was to call them striolar and extrastriotar

hair cells, but that proved to be unrealistic once we discov-
ered that hair cells witl_ the same characteristics were found

in different regions of the oscar saccule [,19] and now in the

goldfish saccuie [48, Saidcl ct al., submitted].

The similarity between the organi-
zation of hair cells in the oscar utricle

and those in the vestibular endorgans

of amniotes becomes compelling. In

particular, the extrastriolar hair cells

resemble the amniote type II hair cell
[27]. Careful examination of the strio-

lar hair cells (including their response

to ototoxic drugs and their ultrastruc-

ture) suggest a number of important
characteristics in common with the am-

niote type I hair cell. The unique inner-

vation of type I amniote hair cells by a

nerve chalice is also paralleled by a

unique innervation of striolar hair cells

in fishes [42, 47]. Moreover, the type I
hair cells and the teleost striolar cells

are innervated by the largest diameter

eighth nerve fibers (e.g., [50]). In

fishes, these hair cells have a higher

number of afferent synapses than ex-

trastriolar hair cells [41].

Several alternatives presented

themselves for naming teleost striolar

hair cells. One would be to give them
a distinct name (e.g., fish type I, type

III) which would result in the proliferation of names. This

procedure would generate confusion as has occurred in the

literature on types of hair cell ciliary bundles (see [4]). For

both the similarities between the ultrastructure of type I cells

and the srriolar cells and for this latter reason, we have cho-

sen to call the striolar cells (and similar cells in other fish

otic endorgans) type I-like.

ARE TYPE I AND TYPE I-LIKE CELLS

HOMOLOGOUS?

The name does not, however, mean to imply homology

between type I and type I-like cells. Determination of homol-

ogy is not something that can be easily done, and we are re-

luctant to suggest that the two cell types are homologous in

the evolutionary sense. However, we do suggest that type I

cells could have readily evolved from type l-like cells with

minor genetic modifications and the development of a nerve

chalice. Ontogenic studies on the developing mouse [51]

suggest that a chalice might be a derived characteristic that

arises ontogeneticalty as a multiple-branching axonal termi-
nation with multiple afferent terminals on what will become

type I hair cells. Thus, it is possible that the nerve chalice

found on amniote type I hair cells may represent a simple on-

togenetic change evolved after vertebrate adaptation to ter-
restrial life.

WHY HETEROGENEITY IN FISHES?

Finding multiple hair cell types in fishes leads to a num-

ber of interesting and potentially important questions with
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regard to function of the fish ear and evolution of octavolat-

eralis endorgans, as well as otolithic function in vertebrates.

Differences in processing information from different hair cell

types to the eighth nerve and then to the CNS is suggested by

several factors: the presence of different-sized synaptic bod-

ies and structure of innervating neurons in particular. The

presence of large mitochondria and extensive subnuctear

cisternae also suggest a significantly higher metabolic activ-

ity in type l-like than in type II hair ceils.

While physiological data are absent about type l-like and

type iI hair cells in the oscar, some interesting data from hair

cells isolated from the goldfish saccule is pertinent. Using

patch clamp studies, Sugihara and Furukawa [52] found that
two cell types could be differentiated by the physiological

characteristics of frequency response and spontaneous activ-

ity and these physiological differences correlated with mor-

phological shapes. These two cell types correlate in shape to

cell types we have identified as being type II and type I-like

in the goldfish saccule, further implying that the two cell

types are indeed physiologically different [48, Saidet et al.,
submitted].

The second question of considerable interest is the evolu-

tionary implications of two hair cell types in fish ears. While,

as indicated earlier, we cannot easily speculate about homol-

ogy between the hair cells found between amniotes and
fishes, it is safe to suggest that the hair cell heterogeneity is

not a uniquely amniote characteristic. With the presence of
inner and outer hair cells in mammals, tall and short hair

cells in the avian basilar papilla, and type I and type II hair

cells in vestibular epithelia, it is clear that heterogeneity has

flourished among amniotes. The presence of multiple recep-

tor cell types in fishes as in homeothermic vertebrates im-

plies a fundamental vertebrate dichotomy in the processing

of mechanoreception by different ear endorgans. This dichot-

omy, a type of "parallel processing," apparently has existed

since early in the evolution of the vertebrate ear. Finding

more than one hair cell type and "information channel" in the

otolithic organs of fish -- as in other vertebrates -- also sug-

gests that all vertebrate otolithic organs derive two (or more)
classes of information from the periphery.

FUNCTIONAL IMPLICATIONS

OF REGIONALIZATION

IN HAIR CELL STRUCTURE

The combination of morphological and physiological

data on hair cells in the goldfish saccule [52] suggest that
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